If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+150t+1
We move all terms to the left:
0-(-16t^2+150t+1)=0
We add all the numbers together, and all the variables
-(-16t^2+150t+1)=0
We get rid of parentheses
16t^2-150t-1=0
a = 16; b = -150; c = -1;
Δ = b2-4ac
Δ = -1502-4·16·(-1)
Δ = 22564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{22564}=\sqrt{4*5641}=\sqrt{4}*\sqrt{5641}=2\sqrt{5641}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-2\sqrt{5641}}{2*16}=\frac{150-2\sqrt{5641}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+2\sqrt{5641}}{2*16}=\frac{150+2\sqrt{5641}}{32} $
| 4x-8+x=2x-3+3x-5 | | 0.6k=40+0.2k | | 5^x2+2x+4=125 | | 4+3n=13-6n | | 53=x-17 | | -4x+3=-47 | | 7x+20=380-5x | | 5x-7-2x=11 | | 180=45/2g | | 16=x/20,x= | | 8+x=59 | | 3q+15q=18 | | v-7.3=1.2 | | y-9.38=6.4 | | w+1.6=9.12 | | -6y+2(y-5)=18 | | 46x=4,416 | | 2x+7-5x+8=3(6x+5)-12x | | -3x+8(x+4)=7 | | w+4.45=6.14 | | x4+10x2+24=0 | | 12x+9=9x+15 | | 12+3w=6+3w+6 | | 2/3*x=5/6 | | t/4+3=2.5 | | -54/c=18 | | 2(u-7)-8u=-20 | | 3v+8=2v+7 | | |5x-8|=12 | | 2x2+0=7x+12 | | x^2=0.1548-1.8x | | 134-y=178 |